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ABSTRACT 
The Exponentiated Fréchet-Weibull (EF-Weibull) distribution is introduced as a flexible statistical model that 
extends the classical Fréchet and Weibull distributions by incorporating additional shape and scale parameters. 
This study derives its probability density function (PDF), cumulative distribution function (CDF), quantile function, 
hazard function, and moment-based properties, providing a comprehensive theoretical foundation. Maximum 
likelihood estimation (MLE) was employed for parameter estimation, ensuring its applicability to real-world 
datasets. A comparative analysis was conducted against the Exponentiated Fréchet (Exp-Fréchet), Exponentiated 
Weibull (Exp-Weibull), Exponentiated Exponential (Exp-Exponential), Fréchet, and Weibull distributions using log-
likelihood (LL), Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), Kolmogorov-Smirnov (KS) 
test, Anderson-Darling (AD) test, and Cramér-von Mises (CS) test. The results showed that the EF-Weibull 
distribution provided the best fit, achieving the highest LL and lowest AIC and BIC values, while also demonstrating 
superior empirical performance through KS, AD, and CS test statistics. Graphical evaluations, including histogram 
density plots, hazard function plots, and empirical CDF comparisons, further validated its modelling efficiency. The 
study concludes that the EF-Weibull distribution is an effective model for reliability analysis, survival analysis, and 
extreme value modelling. 
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INTRODUCTION 
The Exponentiated Fréchet-Weibull (EF-Weibull) distribution is an advanced statistical model derived from the 
Exponentiated Fréchet-G (EF-G) family, as proposed by Lamya A. Baharith and Hanan H. Alamoudi (2021). This 
distribution provides a more flexible framework for modelling complex datasets, particularly those exhibiting 
extreme values and heavy-tailed behaviours. By integrating the properties of the Weibull and Fréchet distributions 
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within the EF-G framework, the EF-Weibull model extends the capabilities of traditional statistical distributions 
used in survival analysis, reliability studies, and risk assessment. 
The Weibull distribution, first introduced by Wallodi Weibull (1951), has been widely employed in reliability and 
failure time analysis due to its ability to model various hazard rates. However, it often fails to capture extreme tail 
behaviour accurately. On the other hand, the Fréchet distribution, which belongs to the family of extreme value 
distributions, is known for its effectiveness in modelling extreme phenomena but may not always fit moderate 
failure rates adequately. The EF-G family, introduced to generalise probability distributions using the transformed-
transformer (T-X) method, provides an efficient mechanism for introducing additional shape parameters, 
enhancing the flexibility of standard distributions. The EF-Weibull distribution, developed by incorporating the 
Weibull baseline within the EF-G framework, is thus a powerful tool for analyzing diverse real-world data. The 
development of generalized statistical distributions has been a significant research area in probability and 
statistics. Several studies have extended classical distributions to provide more adaptable models for empirical 
data. Mudholkar and Srivastava (1993) proposed the exponentiated Weibull distribution, which introduced an 
additional shape parameter to increase flexibility. Gupta and Kundu (1999) further explored the exponentiated 
family of distributions in reliability analysis, demonstrating their superior performance in modelling lifetime data. 
The Fréchet distribution, originally introduced by Maurice Fréchet in the 1920s, has been extensively used in 
extreme value analysis (Coles, 2001). Researchers have modified this distribution to accommodate a wider range 
of data structures. Nadarajah and Kotz (2003) highlighted the advantages of using extreme value distributions in 
finance and climate modeling. The EF-G family, introduced by Baharith and Alamoudi (2021), provided a novel 
approach to enhancing distributional flexibility through the T-X transformation, allowing for broader applications in 
statistical modeling. By incorporating the Weibull distribution into the EF-G framework, the EF-Weibull distribution 
further expands the applicability of these models. 
Recent studies, such as Cordeiro et al. (2015) and Nofal et al. (2016), have shown that exponentiated and 
generalized distributions improve data fitting and inference in various fields, including reliability engineering, 
hydrology, and economics. These advancements highlight the relevance of the EF-Weibull model in addressing 
complex data challenges. 
 
METHODOLOGY 
The Exponentiated Fréchet-Weibull distribution is derived by substituting the Weibull CDF into the EF-G family 
framework. The CDF and PDF of the EF-G family, as defined by Baharith and Alamoudi (2021), are given as: 
Cumulative Distribution Function (CDF): 

𝐹(𝑥; 𝛼, 𝜃, 𝛾, 𝛽) = 1 − (1 − 𝑒
(−( 𝛾

−𝑙𝑜𝑔(1−𝐺(𝑥;𝛽))
)

𝜃

)
)

𝛼

                                                                                                                         (1) 

Probability Density Function (PDF): 

𝑓(𝑥; 𝛼, 𝜃, 𝛾, 𝛽) = 𝛼𝜃𝛾𝜃𝑔(𝑥) (−𝑙𝑜𝑔(1 − 𝐺(𝑥; 𝛽)))
−(𝜃+1)

𝑒
(−( 𝛾

−𝑙𝑜𝑔(1−𝐺(𝑥;𝛽))
)

𝜃

)
  × (1 − 𝑒

(−( 𝛾

−𝑙𝑜𝑔(1−𝐺(𝑥;𝛽))
)

𝜃

)
)

𝛼−1

         (2) 

Where 𝐺(𝑥; 𝛽) represents the baseline Weibull CDF. 

Substituting the Weibull distribution 𝐺(𝑥; 𝛽) = 1 − 𝑒−(𝜆𝑥)𝛽
 into the EF-G framework, we obtain the EF-Weibull 

distribution's CDF and PDF as: 
CDF: 

𝐹(𝑥; 𝛼, 𝜃, 𝛾, 𝛽, 𝜆) = 1 − (1 − 𝑒
−( 𝛾

(𝜆𝑥)𝛽
)

𝜃

)

𝛼

                                                                                                                                       (3) 

Pdf of Exponentiated Fréchet-Weibull distribution is expressed as follows:  

𝑓(𝑥; 𝛼, 𝜃, 𝛾, 𝛽, 𝜆) = 𝛼𝜃𝛾𝜃𝛽𝜆−𝛽𝜃 𝑥−(𝛽𝜃+1)𝑒
−

𝛾𝜃

(𝜆𝑥)𝛽𝜃 (1 − 𝑒
−( 𝛾

(𝜆𝑥)𝛽
)

𝜃

)

𝛼−1

                                                                                  (4) 
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To rewrite the Probability Density Function (PDF) of the Exponentiated Fréchet-Weibull (EF-Weibull) distribution 
using the Binomial expansion series: 

(1 − 𝑧)𝑛 = ∑(−1)𝑖 (
𝑛

𝑖
)

∞

𝑖=0

𝑧𝑖                                                                                                                                                                    (5) 

From equation 4 and equation five we obtain  

 (1 − 𝑒
−( 𝛾

(𝜆𝑥)𝛽
)

𝜃

)

𝛼−1

= ∑(−1)𝑘

∞

𝑘=0

(
𝛼 − 1

𝑘
) 𝑒

−(𝑘)( 𝛾

(𝜆𝑥)𝛽
)

𝜃

           

Given that 𝑒
−( 𝛾

(𝜆𝑥)𝛽
)

𝜃

= 𝑧 and 𝛼 − 1 = 𝑛  

  substitute ∑(−1)𝑘

∞

𝑘=0

(
𝛼 − 1

𝑘
) 𝑒

−(𝑘)( 𝛾

(𝜆𝑥)𝛽
)

𝜃

back to equation 4 

𝑓(𝑥; 𝛼, 𝜃, 𝛾, 𝛽, 𝜆) = 𝛼𝜃𝛾𝜃𝛽𝜆−𝛽𝜃 𝑥−(𝛽𝜃+1)𝑒
−

𝛾𝜃

(𝜆𝑥)𝛽𝜃 ∑(−1)𝑘

∞

𝑘=0

(
𝛼 − 1

𝑘
) 𝑒

−(𝑘)( 𝛾

(𝜆𝑥)𝛽
)

𝜃

                                  

Since these exponents 
𝛾𝜃

(𝜆𝑥)𝛽𝜃  𝑎𝑛𝑑 (𝑘) ( 𝛾

(𝜆𝑥)𝛽
)

𝜃
are having the same base the equation above becomes:  

𝑓(𝑥; 𝛼, 𝜃, 𝛾, 𝛽, 𝜆) = 𝛼𝜃𝛾𝜃𝛽𝜆−𝛽𝜃𝑥−(𝛽𝜃+1) ∑(−1)𝑘

∞

𝑘=0

(
𝛼 − 1

𝑘
) 𝑒

−(𝑘+1)( 𝛾

(𝜆𝑥)𝛽
)

𝜃

 

𝑙𝑒𝑡 𝑤𝑖 = ∑(−1)𝑘

∞

𝑘=0

(
𝛼 − 1

𝑘
) 

Therefore the pdf can be expressed as: 

𝑓(𝑥; 𝛼, 𝜃, 𝛾, 𝛽, 𝜆) = 𝛼𝜃𝛾𝜃𝛽𝜆−(𝛽𝜃+1)𝑥−(𝛽𝜃+1)𝑤𝑖𝑒
−(𝑘+1)( 𝛾

(𝜆𝑥)𝛽
)

𝜃

                                                                                    (6) 
The quantile function is expressed as follows: 

𝑄(𝑞) =
𝛾

𝜆 (−𝑙𝑛 (1 − (1 − 𝑞)
1

𝛼𝜃))

𝛽
                                                                                                                                     (7) 

The survival function is expressed as follows: 
𝑆(𝑥) = 1 − 𝐹(𝑥) 

𝑆(𝑥) = (1 − 𝑒
−( 𝛾

(𝜆𝑥)𝛽
)

𝜃

)

𝛼

                                                                                                                                                     (8) 

The hazard function is expressed as follows: 

ℎ(𝑥) =
𝑓(𝑥)

𝑆(𝑥)
 

ℎ(𝑥) = 𝛼𝜃𝛾𝜃𝛽𝜆−𝛽𝜃 𝑥−(𝛽𝜃+1)𝑒
−

𝛾𝜃

(𝜆𝑥)𝛽𝜃 (1 − 𝑒
−( 𝛾

(𝜆𝑥)𝛽
)

𝜃

)

−1

                                                                                           (9) 

To obtain the rth moment of Exponentiated Fréchet-Weibull distribution 
rth moment can be obtain using this formula  

𝐸(𝑥𝑟) = ∫ 𝑥𝑟𝑓(𝑥; 𝛼, 𝜃, 𝛾, 𝛽)
∞

0

𝑑𝑥                                                                                                                                        (10) 

Substitute equation (5) in equation (9) 

𝐸(𝑥𝑟) = ∫ 𝑥𝑟
∞

0

𝛼𝜃𝛾𝜃𝛽𝜆−𝛽𝜃𝑥−(𝛽𝜃+1)𝑤𝑖𝑒
−(𝑘+1)( 𝛾

(𝜆𝑥)𝛽
)

𝜃

𝑑𝑥 
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𝐸(𝑥𝑟) = 𝛼𝜃𝛾𝜃𝛽𝜆−𝛽𝜃 ∫ 𝑥𝑟
∞

0

𝑥−(𝛽𝜃+1)𝑤𝑖𝑒
−(𝑘+1)( 𝛾

(𝜆𝑥)𝛽
)

𝜃

𝑑𝑥 

𝐸(𝑥𝑟) = 𝛼𝜃𝛾𝜃𝛽𝜆−𝛽𝜃𝑤𝑖 ∫ 𝑥𝑟−(𝛽𝜃+1)
∞

0

𝑒−(𝑘+1)𝛾𝜃(𝜆𝑥)−𝛽𝜃𝑑𝑥                                                                                      (11) 

let t = (𝑘 + 1)𝛾𝜃𝛽(𝜆𝑥)−𝛽𝜃                                                                                                                                                  (12) 

𝐸(𝑥𝑟) = 𝛼𝜃𝛾𝜃𝛽𝜆−𝛽𝜃𝑤𝑖 ∫ 𝑥𝑟−(𝛽𝜃+1)
∞

0

𝑒−𝑡𝑑𝑥                                                                                                                  (13) 

By making x as a subject of the formula and differentiate with respect to t from equation (12) 

𝑥 =  (
1

𝜆
 ((𝑘 + 1)𝛾𝜃𝛽𝑡−1)

1
𝛽𝜃

)                                                                                                                                            (14) 

𝑑𝑥 = −
((𝑘 + 1)𝛾𝜃𝛽)

1
𝛽𝜃

𝜆𝛽𝜃
 𝑡

−
1

𝛽𝜃
−1

 𝑑𝑡                                                                                                                                   (15) 

Substitute equation (14) and (15) into equation 13 

𝐸(𝑥𝑟) = 𝛼𝜃𝛾𝜃𝛽𝜆−𝛽𝜃𝑤𝑖 ∫ (
1

𝜆
 ((𝑘 + 1)𝛾𝜃𝛽𝑡−1)

1
𝛽𝜃

)

𝑟−𝛽𝜃−1∞

0

𝑒−𝑡   −
((𝑘 + 1)𝛾𝜃𝛽)

𝜆𝛽𝜃
 𝑡

−
1

𝛽𝜃
−1

𝑑𝑡 

𝐸(𝑥𝑟) = −
𝛼𝜃𝛾𝜃𝛽𝜆−𝛽𝜃𝑤𝑖

(𝑘 + 1)𝛾𝜃𝛽𝜆−𝛽𝜃
∫ 𝑡

𝑟−𝛽𝜃−1
𝛽𝜃

∞

0

𝑒−𝑡𝑑𝑡                                                                                                             (16) 

rth moment is expressed as  

𝐸(𝑥𝑟) = −𝛼𝛾
𝑟
𝛽𝑤𝑖((𝑘 + 1)β)

𝑟
𝛽𝜃Γ (1 −

𝑟

𝛽𝜃
) 

To obtain the 1st moment, let r =1 

𝐸(𝑥) = −𝛼𝛾
1
𝛽𝑤𝑖((𝑘 + 1)β)

1
𝛽𝜃Γ (1 −

1

𝛽𝜃
) 

To obtain the 2nd moment, let r=2 

𝐸(𝑥2) = −𝛼𝛾
2
𝛽𝑤𝑖((𝑘 + 1)β)

2
𝛽𝜃Γ (1 −

2

𝛽𝜃
) 

To obtain the 3rd moment, r=3 

𝐸(𝑥3) = −𝛼𝛾
3
𝛽𝑤𝑖((𝑘 + 1)β)

3
𝛽𝜃Γ (1 −

3

𝛽𝜃
) 

To obtain the 4th moment, r=4 

𝐸(𝑥4) = −𝛼𝛾
4
𝛽𝑤𝑖((𝑘 + 1)β)

4
𝛽𝜃Γ (1 −

4

𝛽𝜃
) 

 
Moment-Generating Function (MGF) 

To compute the moment-generating function (MGF) 𝑴𝒙(𝒕) for Exponentiated Fréchet-Weibull distribution 
𝑴𝒙(𝒕) = 𝑬(𝒆𝒕𝒙)                                                                                                                                                                (17) 

𝐸(𝑒𝑡𝑥) = ∫ 𝑒𝑡𝑥∞

0
𝑓(𝑥; 𝛼, 𝜃, 𝛾, 𝛽)𝑑𝑥                                                                                                                              (18)          

From equation (6) 

𝑓(𝑥; 𝛼, 𝜃, 𝛾, 𝛽) = 𝛼𝜃𝛾𝜃𝛽𝜆−𝛽𝜃𝑥−(𝛽𝜃+1)𝑤𝑖𝑒
−(𝑘+1)( 𝛾𝜃

(𝜆𝑥)𝛽𝜃
)
               

𝑀𝑥(𝑡) =  ∫ 𝑒𝑡𝑥∞

0
𝛼𝜃𝛾𝜃𝛽𝜆−𝛽𝜃𝑥−(𝛽𝜃+1)𝑤𝑖𝑒

−(𝑘+1)( 𝛾𝜃

(𝜆𝑥)𝛽𝜃
)
                                                                                        (19)                                              

𝐒𝐮𝐛𝐬𝐭𝐢𝐭𝐮𝐭𝐞 𝐟(𝐱; 𝛂, 𝛉, 𝛄, 𝛃) 𝐩𝐝𝐟 𝐢𝐧𝐭𝐨 𝐄(𝐞𝐭𝐱) 
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 𝑴𝒙(𝒕) = − ∑
𝑡𝑟

𝑟!

∞

𝑟=0

𝛼𝛾
𝑟
𝛽𝑤𝑖((𝑘 + 1)β)

𝑟
𝛽𝜃Γ (1 −

𝑟

𝛽𝜃
) 

𝑴𝒙(𝒕) = − ∑
𝑡𝑟

𝑟!

∞

𝑟=0

𝛼𝛾
𝑟
𝛽𝑤𝑖((𝑘 + 1)β)

𝑟
𝛽𝜃Γ (1 −

𝑟

𝛽𝜃
) 

𝑴𝒙
′ (𝒕) = − ∑

𝑟𝑡𝑟−1

𝑟!

∞

𝑟=0

𝛼𝛾
𝑟
𝛽𝑤𝑖((𝑘 + 1)β)

𝑟
𝛽𝜃Γ (1 −

𝑟

𝛽𝜃
) 

𝑴𝒙
′ (𝒕) = − ∑

1𝑡1−1

1!

∞

𝑟=0

𝛼𝛾
1
𝛽𝑤𝑖((𝑘 + 1)β)

1
𝛽𝜃Γ (1 −

1

𝛽𝜃
) 

𝑴𝒙
′ (𝒕) = 𝑴𝒙

′ (𝒕) = 𝛼𝛾
1
𝛽𝑤𝑖((𝑘 + 1)β)

1
𝛽𝜃Γ (1 −

1

𝛽𝜃
) 

𝑴𝒙
′′(𝒕) = ∑

𝑟(𝑟 − 1)𝑡𝑟−2

𝑟!

∞

𝑟=0

𝛼𝛾
𝑟
𝛽𝑤𝑖((𝑘 + 1)β)

𝑟
𝛽𝜃Γ (1 −

𝑟

𝛽𝜃
) 

Now, we will substitute t=1 and r=2 

𝑴𝒙
′′(𝒕) = ∑

2(2 − 1)𝑡2−2

2!

∞

𝑟=0

𝛼𝛾
2
𝛽𝑤𝑖((𝑘 + 1)β)

2
𝛽𝜃Γ (1 −

2

𝛽𝜃
) 

𝑴𝒙
′′(𝒕) = 𝛼𝛾

2
𝛽𝑤𝑖((𝑘 + 1)β)

2
𝛽𝜃Γ (1 −

2

𝛽𝜃
) 

𝑴𝒙
′′′(𝒕) = 𝛼𝛾

3
𝛽𝑤𝑖((𝑘 + 1)β)

3
𝛽𝜃Γ (1 −

3

𝛽𝜃
) 

𝑴𝒙
′𝒗(𝒕) = 𝛼𝛾

4
𝛽𝑤𝑖((𝑘 + 1)β)

4
𝛽𝜃Γ (1 −

4

𝛽𝜃
) 

Likelihood Function 

To obtain the maximum likelihood estimators (MLEs) for the parameters 𝛼, β, λ, and θ of Exponentiated Fréchet-
Weibull distribution (EFW), we need to set up the likelihood function based on the pdf and then take the partial 
derivatives with respect to each parameter. 

Let 𝑥1, 𝑥2, … , 𝑥𝑛 be an observed sample from the EFW distribution.  
The log-likelihood function ℓ(α,θ,γ,β,λ) is:  

𝑙 = ∑ 𝑙𝑜𝑔

𝑛

𝑖=1

𝑓(𝑥; 𝛼, 𝜃, 𝛾, 𝛽, 𝜆) 

𝑓(𝑥; 𝛼, 𝜃, 𝛾, 𝛽, 𝜆) = 𝛼𝜃𝛾𝜃𝛽𝜆−𝛽𝜃 𝑥−(𝛽𝜃+1)𝑒
−

𝛾𝜃

(𝜆𝑥)𝛽𝜃 (1 − 𝑒
−( 𝛾

(𝜆𝑥)𝛽
)

𝜃

)

𝛼−1

 

Putting the PDF function into the likelihood-function: 

𝐿(𝑥; 𝛼, 𝜃, 𝛾, 𝛽, 𝜆) = ∑ 𝑙𝑜𝑔

𝑛

𝑖=1

(𝛼𝜃𝛾𝜃𝛽𝜆−𝛽𝜃 𝑥−(𝛽𝜃+1)𝑒
−

𝛾𝜃

(𝜆𝑥)𝛽𝜃 (1 − 𝑒
−( 𝛾

(𝜆𝑥)𝛽
)

𝜃

)

𝛼−1

)                                         (20)  

𝐿(𝑥; 𝛼, 𝜃, 𝛾, 𝛽, 𝜆)

= 𝑛𝑙𝑛𝛼 + 𝑛𝑙𝑛𝜃 + 𝑛𝜃𝑙𝑛𝛾 + 𝑛𝑙𝑛𝛽 + 𝑛𝛽𝑙𝑛𝜆 − 𝛽(𝜃 + 1) ∑ 𝑙𝑛(𝑥𝑖)

𝒏

𝑖=1

 − ∑(𝜆𝑥𝑖)𝛽

𝑛

𝑖=1

− ∑
𝛾𝜃

(𝜆𝑥𝑖)𝛽𝜃

𝒏

𝑖=1

+ (𝛼 − 1) ∑ 𝑙𝑛 (1 − 𝑒
−( 𝛾

(𝜆𝑥𝑖)
𝛽

)

𝜃

)

𝒏

𝑖=1
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Differentiating  partially ℓ(𝛼, 𝜃, 𝛾, 𝛽, 𝜆) concerning α is: 

𝜕𝑙

𝜕𝛼
=

𝑛

𝛼
+ ∑ 𝑙𝑛 (1 − 𝑒

−( 𝛾

(𝜆𝑥𝑖)
𝛽

)

𝜃

)                                                                                                                               (21)

𝒏

𝑖=1

 

𝜕𝑙

𝜕𝛽
= −𝑛𝜃𝑙𝑛𝜆 − (𝛽𝜃 + 1) ∑

1

𝑥𝑖

𝑛

𝑖=1

+ ∑
𝛾𝜃𝜃𝑙𝑛(𝜆𝑥𝑖)

(𝜆𝑥𝑖)𝛽𝜃

𝑛

𝑖=1

                                                                                                   (22) 

𝜕𝑙

𝜕𝛾
=

𝑛𝜃

𝛾
− ∑

𝛾𝜃−1

(𝜆𝑥𝑖)𝛽𝜃

𝑛

𝑖=1

                                                                                                                                                      (23) 

𝜕𝑙

𝜕𝜆
= −

𝑛𝛽𝜃

𝜆
+ ∑

𝛾𝜃𝛽𝜃

𝜆𝛽𝜃+1𝑥𝑖
𝛽𝜃

𝑛

𝑖=1

                                                                                                                                           (24) 

 

𝜕𝑙

𝜕𝜃
=

𝑛

𝜃
+ 𝑛𝑙𝑛𝛾 − 𝑛𝛽𝑙𝑛(𝜆) − 𝑛 ∑ 𝑙𝑛𝑥𝑖

𝑛

𝑖=1

+ ∑
𝛾𝜃𝑙𝑛(𝛾) − 𝑙𝑛(𝜆𝑥𝑖)

(𝜆𝑥𝑖)𝜷𝜽

𝒏

𝑖=1

                                                                         (25) 

 

Numerical Algorithm (Optimisation) 
We use Maximum Likelihood Estimation (MLE) via numerical optimization. We use R with the Quasi-Newton 
Raphson method) to obtain the parameters using the first dataset. 

𝛼 𝜃 𝛾 𝛽 𝜆 
1824.9937 1.320214 2635.7855 1.809813 36.0671 

 
Second data 

𝛼 𝜃 𝛾 𝛽 𝜆 

1.4945e+02 1.8131e-01 1.3148e+02 4.0941e-01 1.7824e-03 
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We Consider an uncensored data set consisting of 100 observations on breaking stress of carbon fibers (in Gba), 
Smith, R. L., & Naylor, J. C. (1987).: Sahai et al (2021). The breaking stress of carbon fibers dataset contains 100 
positive, continuous values with right-skewed behavior, making it suitable for EF-Weibull modeling due to its ability 
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to capture variability and heavy tails. Its flexible hazard function is ideal for analyzing material strength and failure 
data. 

Table 1: Breaking stress of carbon fibers (in Gba) 
3.70, 2.74, 2.73, 2.50, 3.60, 3.11, 3.27, 2.87, 1.47, 3.11, 4.42, 2.41, 3.19, 3.22, 1.69, 3.28, 3.09, 
1.87, 3.15, 4.90, 3.75, 2.43, 2.95, 2.97, 3.39, 2.96, 2.53, 2.67, 2.93, 3.22, 3.39, 2.81, 4.20, 3.33, 
2.55, 3.31, 3.31, 2.85, 2.56, 3.56, 3.15, 2.35, 2.55, 2.59, 2.38, 2.81, 2.77, 2.17, 2.83, 1.92, 1.41, 
3.68, 2.97, 1.36, 0.98, 2.76, 4.91, 3.68, 1.84, 1.59, 3.19,1.57, 0.81, 5.56, 1.73, 1.59, 2, 1.22, 
1.12, 1.71, 2.17, 1.17, 5.08, 2.48, 1.18, 3.51, 2.17, 1.69, 1.25, 4.38, 1.84, 0.39, 3.68, 2.48, 0.85, 
1.61, 2.79, 4.70, 2.03, 1.80, 1.57, 1.08, 2.03, 1.61, 2.12, 1.89, 2.88, 2.82, 2.05, 3.65. 

Source: Smith & Naylor (1987) 
Table 2: Summary Statistics Data on Carbon Fibers Breaking Stress (in Gba) Data 

Mean Std.Dev Median Min Max Skew Kurtosis Range 
2.62 1.01 2.70 0.39 5.56 0.36 0.04 5.17 

Source: Authors computation R statistics 
This table 2 indicates key descriptive statistics such as mean, standard deviation, median, minimum, maximum, 

skewness, kurtosis, and range. 
Table 3: Model comparison using Loglikelihood and Information Criterion of breaking stress Data 

 

 

 

    

 

 

 

 

 

 

 

Source: Authors computation R statistics 

Table 3 presents a comparative analysis of selected probability distributions used to model the breaking stress of 
carbon fibers, based on log-likelihood, Akaike Information Criterion (AIC), and Bayesian Information Criterion 
(BIC). A higher log-likelihood value and lower AIC/BIC scores indicate a better model fit. Among the models 
considered, the Exponential distribution demonstrated the poorest performance, while the Exponentiated Fréchet-
Weibull (EFW) distribution provided the best fit. The EFW model achieved the highest log-likelihood (-30.9813) 
and the lowest AIC (69.9626) and BIC (80.3833), identifying it as the most optimal model. Although models such 
as the Weibull and Fréchet showed moderate performance, they were less effective compared to EFW. The AIC 
and BIC criteria penalize model complexity, ensuring a balance between goodness-of-fit and parsimony. Overall, 
the findings support the EFW distribution as the most suitable model for characterizing the breaking stress data. 
 

Table 4: Goodness of fit Criterion of breaking stress Data 

Distribution KS_Statistic AD_Statistic CM_Statistic 

Exponential 0.6922 31.0823 20.8056 

Frechet 0.4498 32.3462 6.9945 

Weibull 0.6751 113.5178 19.5529 

Exp_Exponential 0.6762 122.8361 19.9059 

Exp_Frechet 0.4847 38.1370 8.3292 

Exp_Weibull 0.6578 105.5068 18.5685 

EFW 0.1956 15.9627 3.1824 

Source: Authors computation R statistics 

Distribution LogLikelihood AIC BIC 

Exponential -413.0733 828.1467 830.7518 

Exp-Exponential -403.9095 811.8190 817.0293 

Weibull -268.3168 540.6337 545.8440 

Fréchet -208.8769 421.7538 426.9641 

Exp-Weibull -260.0399 526.0799 533.8954 

Exp-Fréchet -205.8048 417.6097 425.4252 

EFW -30.9813 69.9626 80.38328 
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Table 4 presents the goodness-of-fit evaluation of various probability distributions applied to the breaking stress 
data, based on the Kolmogorov–Smirnov (KS), Anderson–Darling (AD), and Cramér–von Mises (CM) statistics. 
The Exponentiated Fréchet–Weibull (EFW) distribution exhibits the lowest KS (0.1956), AD (15.9627), and CM 
(3.1824) values, indicating the best overall fit. In contrast, the Exponential distribution shows the poorest 
performance, with the highest KS (0.6922), AD (31.0823), and CM (20.8056) statistics. The Fréchet and 
Exponentiated Fréchet (Exp-Fréchet) distributions perform moderately—better than the Exponential model but 
less effectively than the EFW. Meanwhile, the Exponentiated Weibull (Exp-Weibull), Weibull, and Exponentiated 
Exponential (Exp-Exponential) distributions exhibit relatively high AD and CM values, suggesting poorer fits. The 
AD statistic is particularly sensitive to deviations in the distribution tails, while the CM statistic measures overall 
deviation. These results affirm that the EFW distribution provides the most appropriate fit for the breaking stress 
data. 

Table 5: Data represents a COVID-19 mortality rate 

8.826,6.105,10.383,7.267,13.220,6.015,10.855,6.122,10.685,10.035,5.242,7.630,14.604,7.903,
6.327,9.391,14.962,4.730,3.215,16.498,11.665,9.284,12.878,6.656,3.440,5.854,8.813,10.043,7
.260,5.985,4.424,4.344,5.143,9.935,7.840,9.550,6.968,6.370,3.537,3.286,10.158,8.108,6.697,7
.151,6.560,2.988,3.336,6.814,8.325,7.854,8.551,3.228,3.499,3.751,7.486,6.625,6.140,4.909,4.
661,1.867,2.838,5.392,12.042,8.696,6.412,3.395,1.815,3.327,5.406,6.182,4.949, 4.089, 3.359, 
2.070, 3.298, 5.317, 5.442, 4.557, 4.292, 2.500, 6.535, 4.648, 4.697, 5.459, 4.120,3.922,3.219, 
1.402, 2.438, 3.257, 3.632, 3.233, 3.027,2.352, 1.205, 2.077, 3.778,3.218,2.926, 2.601, 2.065, 
1.041, 1.800, 3.029, 2.058, 2.326, 2.506, 1.923 

Source: Mortality rate of Mexico 

Table 5 illustrates the Mexico COVID-19 mortality rate of 108 days, recorded from 4 March to 20 July 2020. The 
mortality rate dataset from Mexico spans 108 days with non-negative, continuous values showing irregular spikes 
and tail behavior. The EF-Weibull distribution is appropriate here due to its flexibility in modeling epidemic mortality 
patterns with complex hazard structures. 

Table 6: Summary Statistics of COVID-19 mortality rate data that belongs to Mexico within 108 days 

Mean Sd Median Min Max Skew Kurtosis Range 

5.76 3.25 5.19 1.04 16.5 0.97 0.61 15.46 

Source: Authors computation R statistics 

Table 6 describes key statistics such as mean, standard deviation, median, minimum, maximum, skewness, 
kurtosis, and range. 

Table 7: Model comparison using Log likelihood and Information Criterion of Mexico COVID-19 Data 
Distribution Log Likelihood AIC BIC 
Exponential -1055.8850 2113.7701 2116.4522 

Exp-Exponential -1045.6677 2095.3354 2100.6997 

Weibull -580.3746 1164.7492 1170.1134 

Fréchet -331.0231 666.0461 671.4104 

Exp-Weibull -570.4822 1146.9644 1155.0108 

Exp-Fréchet -332.8664 671.7328 679.7792 

EFW -4.8897 17.7794 28.5080 
 

Table 4 presents the goodness-of-fit evaluation of various probability distributions applied to the breaking stress  
Data, based on the Kolmogorov–Smirnov (KS), Anderson–Darling (AD), and Cramér–von Mises (CM) statistics.  
The Exponentiated Fréchet–Weibull (EFW) distribution exhibits the lowest KS (0.1956), AD (15.9627), and CM  
(3.1824) values, indicating the best overall fit. In contrast, the Exponential distribution shows the poorest perform
ance, with the highest KS (0.6922), AD (31.0823), and CM (20.8056) statistics. The Fréchet and Exponentiated  
Fréchet (Exp-Fréchet) distributions perform moderately better than the Exponential model but less effective than  
the EFW. Meanwhile, the Exponentiated Weibull (Exp-Weibull), Weibull, and Exponentiated Exponential (Exp-Ex
ponential) distributions exhibit relatively high AD and CM values, suggesting poorer fits. The AD statistic is partic
ularly sensitive to deviations in the distribution tails, while the CM statistic measures overall deviation. These  
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results affirm that the EFW distribution provides the most appropriate fit for the breaking stress data 
 

Table 8: Goodness of fit Criterion of COVID-19 mortality rate data that belongs to Mexico within 108 
days. 

Distribution KS_Statistic    AD_Statistic CM_Statistic 
Exponential 0.8342 366.3142 31.2414 
Frechet 0.5898 68.4413 14.4674 

Weibull 0.8149 297.2201 30.1016 
Exp_Exponential 0.8214 356.3606 30.8391 
Exp_Frechet 0.6248 81.28323 16.5883 
Exp_Weibull 0.8006 287.3742 29.6044 
EFW 0.1756 17.7917 3.57210 

 
Table 8 presents the Goodness-of-Fit (GoF) criteria for different distributions fitted to the COVID-19 mortality rate 
data over 108 days in Mexico. The Kolmogorov-Smirnov (KS), Anderson-Darling (AD), and Cramér-von Mises 
(CM) statistics are used to assess how well each distribution fits the data. The Exponentiated Fréchet-Weibull 
(EFW) distribution has the lowest KS (0.1756), AD (17.7917), and CM (3.5721) statistics, indicating the best fit 
among all models. The Exponential distribution shows the worst fit, with the highest KS (0.8342), AD (366.3142), 
and CM (31.2414) statistics, suggesting significant deviation from the data. 
The Fréchet and Exp-Fréchet distributions perform better than Weibull but still do not match EFW’s fit. The Exp-
Weibull and Exp-Exponential distributions improve over Weibull and Exponential but remain less effective than 
EFW. Lower KS, AD, and CM values indicate a better model fit, confirming that the EFW distribution provides the 
most accurate representation of COVID-19 mortality rate data. 
 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
This plot in figure 5 presents a histogram with theoretical density curves overlaid, comparing different probability 
distributions fitted to a dataset. The histogram, represented by light blue bars, shows the empirical distribution of 
the data. The black line represents the Exponentiated Fréchet-Weibull (EFW) distribution, which closely follows 
the shape of the histogram. This suggests that the EFW distribution provides the best fit among all the tested 
models, as it captures both the peak and the tail behavior effectively. Other distributions, such as the Exponential 
(purple), Exp-Exponential (red), and Exp-Weibull (green), deviate significantly from the histogram, particularly at 
the peak and the tail. The Exponential model performs poorly, as it fails to capture the skewness of the data. The 
Fréchet (orange) and Exp-Fréchet (blue) distributions exhibit a moderate fit but still struggle to align with the data, 
especially at the peak and right tail. The Weibull (brown) distribution fits better than the Exponential model but 
does not achieve the level of accuracy that the EFW model demonstrates. 
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Figure 6 presents a histogram of the observed data overlaid with the theoretical density functions of various 
probability distributions. The histogram, displayed in light blue bars, illustrates the empirical distribution, while the 
dashed curves represent different fitted models. The solid black curve corresponds to the Exponentiated Fréchet-
Weibull (EFW) distribution. The x-axis denotes the observed variable (e.g., breaking stress or COVID-19 mortality 
rate), and the y-axis represents the probability density. 
 
The EFW distribution demonstrates the best fit, as its curve closely follows the empirical histogram, effectively 
capturing both the central peak and the long right tail. In contrast, distributions such as the Exp-Exponential (red) 
and Exp-Fréchet (blue) deviate significantly, with their peaks misaligned and poor representation of the data’s 
spread. The Weibull (brown) and Fréchet (orange) models offer moderate fits but still fail to capture the tail behavior 
accurately. The Exponential distribution (purple) performs the worst, as it is unable to accommodate the skewness 
and heavy-tailed nature of the data. 
 
CONCLUSION 
The Exponentiated Fréchet–Weibull (EF-Weibull) distribution was developed by integrating the Weibull cumulative 
distribution function (CDF) into the Exponentiated Fréchet-G (EF-G) family, resulting in a highly flexible statistical 
model capable of accommodating extreme values and heavy-tailed data. The derivation of its probability density 
function (PDF), CDF, quantile function, and hazard function illustrates the model’s ability to capture a wide range 
of data behaviors. Moment-based analyses, including the r-th moment and moment-generating function (MGF), 
were employed to explore the distribution’s theoretical properties. Parameter estimation was performed using the 
maximum likelihood estimation (MLE) method, reinforcing the EF-Weibull distribution’s practical applicability in 
real-world contexts. A comparative analysis was carried out to evaluate the performance of the EF-Weibull 
distribution relative to several alternative models, including the Exponentiated Fréchet (Exp-Fréchet), 
Exponentiated Weibull (Exp-Weibull), Exponentiated Exponential (Exp-Exponential), Fréchet, and Weibull 
distributions. Each model was fitted to empirical data using MLE, and their goodness-of-fit was assessed using 
log-likelihood (LL), Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), Kolmogorov–Smirnov 
(KS) test, Anderson–Darling (AD) test, and Cramér–von Mises (CM) test. The EF-Weibull distribution achieved the 
highest log-likelihood and the lowest AIC and BIC values, indicating the best fit among the models. It also recorded 
the lowest KS, AD, and CM statistics, further confirming its superior alignment with empirical data. While the 
Fréchet and Exp-Fréchet models performed relatively well, they lacked the flexibility of the EF-Weibull in capturing 
data variability. The Weibull and Exp-Weibull distributions showed moderate performance but were limited in 
modeling tail behavior. The Exp-Exponential distribution was the least effective, failing to capture extreme values 
adequately.Graphical evaluations including histogram and theoretical density plots, hazard function plots, and 
empirical CDF comparisons provided additional support for the EF-Weibull distribution’s superior performance. 
The histogram and density plots demonstrated a strong visual alignment of the EF-Weibull model with observed 
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data, especially in the tail regions. The hazard function analysis showcased the distribution’s adaptability for 
reliability modeling, while empirical CDF comparisons further affirmed its excellent fit to real-world data. 
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