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ABSTRACT 
This paper introduces the Gompertz Generalised Weibull (GGWeibull) distribution, a novel and flexible statistical model 
obtained by applying the Gompertz generator to the Weibull baseline distribution. The GGWeibull enhances modelling 
capabilities by accommodating a wide range of hazard shapes and tail behaviours, making it particularly well-suited for reliability 
and engineering data. We derive and explore its key statistical properties, including the probability density function, cumulative 
distribution function, survival function, hazard function, and moments. Parameter estimation is conducted via the maximum 
likelihood method, and the model’s performance is rigorously assessed through goodness-of-fit measures, including the log-
likelihood, Akaike Information Criterion (AIC), and Bayesian Information Criterion (BIC). Application to the breaking stress data 
of carbon fibres demonstrates the clear superiority of the GGWeibull distribution over traditional models such as the Weibull, 
Gompertz, Exponentiated Gompertz, and Exponentiated Weibull distributions. The GGWeibull achieves the highest log-
likelihood and the lowest AIC and BIC, indicating the best balance between model fit and complexity. Visual comparisons using 
histograms and theoretical density plots further confirm its superior fit to empirical data. We recommend the GGWeibull 
distribution as a robust and flexible tool for modelling failure times, material strength, and other engineering phenomena, and 
encourage future research to extend its application to broader fields such as biomedical survival analysis and environmental 
risk modelling. 
 
Keywords: Reliability analysis, Hazard function, Maximum likelihood, Application, Properties 
 
INTRODUCTION 
In recent years, the development of flexible probability distributions has become a major focus in statistical modelling, driven 
by the need to better capture the complexities of real-world data across fields such as reliability analysis, survival analysis, 
hydrology, economics, and medicine. Among these innovations, the Gompertz Generalized Weibull Distribution (GGWD) 
emerges as a novel distribution derived from the Gompertz-G family, using the Weibull distribution as the baseline. This new 
model enriches the flexibility of the classical Weibull distribution by incorporating the shape-enhancing mechanism of the 
Gompertz-G framework, allowing it to handle various data behaviors such as increasing, decreasing, bathtub, and unimodal 
hazard rates. The Gompertz-G family, proposed by Morad A. et al (2017), has been widely used to generalize well-known 
distributions by embedding the Gompertz generator, which introduces an additional parameter controlling the tail and hazard 
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behaviors. When applied to the Weibull baseline, the resulting GGWD offers enhanced modeling capability over the traditional 
Weibull and Gompertz-Weibull models. In the broader landscape of distributional developments, several authors have 
introduced and extended families that aim to achieve better goodness-of-fit, flexibility, and interpretability. Recent examples 
include the Exponentiated Weibull (Mudholkar and Srivastava, 1993), Kumaraswamy Weibull (Cordeiro and de Castro, 2011), 
Weibull-G (Bourguignon et al., 2014), Beta Weibull (Famoye et al., 2005), Exponentiated Generalized Weibull (Cordeiro et al., 
2013), Weibull Poisson (Morais and Barreto-Souza, 2011), Marshall-Olkin Weibull (Li and Peng, 2011), Weibull Lindley 
(Zakerzadeh and Dolati, 2009), Weibull Burr XII (Cordeiro et al., 2015), Exponential Generalized Weibull (Alizadeh et al., 2015), 
Gompertz Weibull (Zografos and Balakrishnan, 2009), Exponentiated Exponential Weibull (Sarhan et al., 2011), Truncated 
Weibull Lomax (Bakouch et al., 2014), Transmuted Weibull (Aryal and Tsokos, 2009), Weibull Inverse Gaussian (Hossain et 
al., 2012), Gamma Weibull (Hassanein and Al-Shomrani, 2015), Generalized Gamma Weibull (Nadarajah and Kotz, 2006), 
Fréchet Weibull (El-Gohary et al., 2013), Weibull Pareto (Bourguignon et al., 2016), and Weibull Power Series (Barreto-Souza 
et al., 2011). These distributions have been used to model diverse types of lifetime, reliability, and survival data, often 
outperforming classical models in terms of goodness-of-fit and providing deeper insights into the stochastic behaviour of 
complex systems. By situating the GGWD within this rich framework, this work aims to extend the boundaries of applicable 
models, offering a versatile tool for practitioners and researchers across many applied disciplines. 
 
METHODOLOGY 

The Gompertz-G Family of Distributions 
This paper presents the cumulative distribution function (CDF), probability density function (PDF), and quantile function of the 
GGFD, alongside its properties and potential applications. 
The Gompertz-G family of distributions is defined by its cumulative distribution function: 

𝐹(𝑥) = 1 − 𝑒
𝜃
𝛾

[1−(1−𝐺(𝑥))
−𝛾

]                         𝛾 and 𝜃>0                          
                                                                     (1) 

Where: 𝜃 >0 is the scale parameter, 

 𝛾 >0 is the shape parameter, 

 G(x) is the CDF of the baseline distribution. 
The corresponding PDF is given by: 

𝑓(𝑥) = 𝜃𝑔(𝑥)(1 − 𝐺(𝑥))
−𝛾−1

𝑒
𝜃
𝛾

[1−(1−𝐺(𝑥))
−𝛾

]
                                                                                        (2) 

Where g(x) is the PDF of the baseline distribution. 
 
The Weibull Distribution 
The Weibull distribution is widely used in modelling extreme values. Its CDF, PDF, and quantile function are given as: 
CDF: 

𝐺𝑊(𝑥) = 1 − 𝑒−(𝜆𝑥)𝛽
Where λ, 𝛽 > 0 is the scale parameter and 𝜃 > 0 is the shape parameter. 

PDF: 

𝑔𝐸𝐿(𝑥) = 𝛽𝜆𝑥𝛽−1𝑒−(𝜆𝑥)𝛽
  X > 0. 𝛼, 𝜆 𝑎𝑛𝑑 𝛽 > 0                                                                  (3) 

 
Quantile Function: 

𝑄𝐸𝐿(𝑥) =
1

𝜆
[(−ln (1 − 𝑝))

1
𝛽]                                                                                                                      (4) 

The Gompertz Generalised Weibull Distribution 
Using the Gompertz-G framework, the GGFD is derived with the Weibull distribution as the baseline. Substituting G(x) and g(x) 
from the Weibull distribution into the Gompertz-G formulas, we obtain: 
CDF: 

𝐹(𝑥) = 1 − 𝑒
𝜃
𝛾

[1−(𝑒−(𝜆𝑥)𝛽
)

−𝛾

]
                                                                                                                       (5) 

𝐹(𝑥) = 1 − 𝑒
𝜃
𝛾

[1−𝑒𝛾(𝜆𝑥)𝛽
]
                                                                                                                              (6) 

PDF:  
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 𝑓(𝑥) = 𝜃𝛽𝜆𝛽𝑥𝛽−1𝑒𝛾(𝜆𝑥)𝛽
𝑒

𝜃

𝛾
(1−𝑒𝛾(𝜆𝑥)𝛽

)
                                                                                                    (7) 

Using Taylor series expansion  

𝑒
𝜃
𝛾

(1−𝑒𝛾(𝜆𝑥)𝛽
)

= ∑
(

𝜃
𝛾

)
𝑖

𝑖

∞

𝑖=𝑜

(1 − 𝑒𝛾(𝜆𝑥)𝛽
)

𝑖

 

∑
(

𝜃
𝛾

)
𝑖

𝑖

∞

𝑖=𝑜

(1 − 𝑒𝛾(𝜆𝑥)𝛽
)

𝑖

= ∑
1

𝑖

∞

𝑖=𝑜

(
𝜃

𝛾
)

𝑖

∑(−1)𝑗

∞

𝑗=0

(
𝑖

𝑗
) (𝑒𝛾(𝜆𝑥)𝛽

)
𝑗

 

𝑒
𝜃
𝛾

(1−𝑒𝛾(𝜆𝑥)𝛽
)

=
1

𝑖
∑ ∑(−1)𝑗

∞

𝑗=0

∞

𝑖=𝑜

(
𝜃

𝛾
)

𝑖

(
𝑖

𝑗
) (𝑒𝛾(𝜆𝑥)𝛽

)
𝑗

 

𝑓(𝑥) = 𝜃𝛽𝜆𝛽𝑥𝛽−1 (𝑒𝛾(𝜆𝑥)𝛽
)

1

𝑖
∑ ∑(−1)𝑗

∞

𝑗=0

∞

𝑖=𝑜

(
𝜃

𝛾
)

𝑖

(
𝑖

𝑗
) (𝑒𝛾(𝜆𝑥)𝛽

)
𝑗

 

𝑓(𝑥) = 𝜃𝛽𝜆𝛽𝑥𝛽−1 ∑ ∑
(

𝜃
𝛾

)
𝑖

𝑖

∞

𝑗=1

∞

𝑖=𝑜

(−1)𝑗 (
𝑖

𝑗
) (𝑒𝛾(𝐽+1)(𝜆𝑥)𝛽

) 

𝑙𝑒𝑡 𝑡 = (𝜆𝑥)𝛽 
And 

 𝑤𝑖 = ∑ ∑
(

𝜃
𝛾

)
𝑖

𝑖

∞

𝑗=1

∞

𝑖=𝑜

(−1)𝑗 (
𝑖

𝑗
) 

𝑓(𝑥) = 𝜃𝛽𝜆𝛽𝑥𝛽−1 𝑤𝑖((𝑒−𝑡)−𝛾(𝐽+1))                                                                                                    (8) 

Quantile Function: 

 𝑄(𝑝) = 𝛽 [−
1

𝜆
ln (1 − (

𝛾

𝜃
ln (

1

1−𝑝
))

−
1
𝛾

)  ]

1
𝛼

                                                                                    (9) 

Survival Function of Gompertz Generalized Exponential Lomax Distribution 

𝑠(𝑥) = 1 − 𝐹(𝑥)      

𝑠(𝑥) = 1 − (1 − 𝑒
𝜃

𝛾
[1−𝑒𝛾(𝜆𝑥)𝛽

]
)   

𝑠(𝑥) = 𝑒
𝜃
𝛾

[1−𝑒𝛾(𝜆𝑥)𝛽
]
                                                                                                                                  (10) 
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Hazard Function of Gompertz Generalized Exponential Lomax Distribution 

ℎ(𝑥) =
𝑓(𝑥)

𝑆(𝑥)
=

𝑓(𝑥)

1 − 𝐹(𝑥)
 

ℎ(𝑥) =
𝜃𝛽𝜆𝛽𝑥𝛽−1𝑒𝛾(𝜆𝑥)𝛽

𝑒
𝜃
𝛾

(1−𝑒𝛾(𝜆𝑥)𝛽
)

𝑒
𝜃
𝛾

(1−𝑒𝛾(𝜆𝑥)𝛽
)

 

ℎ(𝑥) = 𝜃𝛽𝜆𝛽𝑥𝛽−1𝑒𝛾(𝜆𝑥)𝛽
                                                                                                                      (11) 

 

 

 

 

 

 

 

 

 

Moments 
The r-th moment of the EGG-EL distribution is given by: 
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𝑢𝑟
′ = 𝐸(𝑥𝑟) = ∫ 𝑥𝑟𝑓(𝑥)𝑑𝑥

∞

0

 

𝑓(𝑥) = 𝜃𝛽𝜆𝛽𝑥𝛽−1 𝑤𝑖𝑒
𝛾(𝐽+1)𝑡 

𝐸(𝑥𝑟) = ∫ 𝑥𝑟𝜃𝛽𝜆𝛽𝑥𝛽−1 𝑤𝑖𝑒𝛾(𝐽+1)𝑡𝑑𝑥
∞

0

 

𝐸(𝑥𝑟) = 𝜃𝛽𝜆𝛽𝑤𝑖 ∫ 𝑥𝑟+𝛽−1𝑒𝛾(𝐽+1)𝑡𝑑𝑥
∞

0

 

𝑠𝑖𝑛𝑐𝑒 𝑡 = (𝜆𝑥)𝛽 

𝑥 =
1

𝜆
𝑡

1
𝛽 

𝑑𝑥

𝑑𝑡
=

1

𝜆𝛽
𝑡

1
𝛽

−1
 

𝑑𝑥 =
1

𝜆𝛽
𝑡

1
𝛽

−1
𝑑𝑡 

By switching to z form 

𝐸(𝑥𝑟) = ∫ 𝐸(𝑥𝑟) = 𝜃𝛽𝜆𝛽𝑤𝑖 ∫ (
1

𝜆
𝑡

1
𝛽)

𝑟+𝛽−1

𝑒𝛾(𝐽+1)𝑡
1

𝜆𝛽
𝑡

1
𝛽

−1
𝑑𝑡

∞

0

∞

0

 

𝑡
𝑟+𝛽−1

𝛽  × 𝑡
1
𝛽

−1
= 𝑡

𝑟+𝛽−1
𝛽

+
1−𝛽

𝛽 = 𝑡
𝑟
𝛽 

𝜆𝛽 ×
1

𝜆𝑟+𝛽−1
×

1

𝜆
= 𝜆−𝑟 

𝐸(𝑥𝑟) = 𝜃𝜆−𝑟𝑤𝑖 ∫ 𝑡
𝑟
𝛽𝑒𝛾(𝐽+1)𝑡𝑑𝑡

∞

0

 

𝑙𝑒𝑡 
𝑟

𝛽
= 𝑠 

Therefore 

∫ 𝑡𝑠𝑒−𝑎𝑡𝑑𝑧
∞

0

=
Γ(𝑠 + 1)

𝑎𝑠+1
 

𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒  
𝑟

𝛽
= 𝑠           𝑎𝑛𝑑      𝑤ℎ𝑒𝑟𝑒 𝑎 =  𝛾(𝑗 + 1) 

The final expression for rth Moment 

𝐸(𝑥𝑟) = 𝜃𝜆−𝑟𝑤𝑖

Γ (
𝑟
𝛽

+ 1)

[𝛾(𝑗 + 1)]
𝑟
𝛽

+1
                                                                               (25) 

 1𝑠𝑡  𝑚𝑜𝑚𝑒𝑛𝑡 =  𝐸(𝑥) = 𝜇1
′ = 𝜃𝜆−1𝑤𝑖

Γ (
1
𝛽

+ 1)

[𝛾(𝑗 + 1)]
1
𝛽

+1
                          

2𝑛𝑑  𝑚𝑜𝑚𝑒𝑛𝑡 = 𝐸(𝑥2) = 𝜇2
′ = 𝜃𝜆−2𝑤𝑖

Γ (
2
𝛽

+ 1)

[𝛾(𝑗 + 1)]
2
𝛽

+1
   

3𝑟𝑑  𝑚𝑜𝑚𝑒𝑛𝑡 = 𝐸(𝑥3) = 𝜇2
′ = 𝜃𝜆−3𝑤𝑖

Γ (
3
𝛽

+ 1)

[𝛾(𝑗 + 1)]
3
𝛽

+1
 

4𝑡ℎ 𝑚𝑜𝑚𝑒𝑛𝑡 = 𝐸(𝑥4) = 𝜇2
′ = 𝜃𝜆−4𝑤𝑖

Γ (
4
𝛽

+ 1)

[𝛾(𝑗 + 1)]
2
𝛽

+1
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Moment Generating Function (MGF) 
The MGF of the EGG-EL distribution is expressed as: 

𝑀𝑥(𝑡) = 𝐸(𝑒𝑡𝑥) = ∫ 𝑒𝑡𝑥𝑓(𝑥)𝑑𝑥
∞

0

 

𝑓(𝑥) = 𝜃𝛽𝜆𝛽𝑥𝛽−1 𝑤𝑖𝑒
𝛾(𝐽+1)𝑡 

𝑀𝑥(𝑡) = ∫ 𝑒𝑡𝑥𝜃𝛽𝜆𝛽𝑥𝛽−1 𝑤𝑖𝑒𝛾(𝐽+1)𝑡𝑑𝑥
∞

0

 

𝑀𝑥(𝑡) = 𝜃𝛽𝜆𝛽𝑤𝑖 ∫ 𝑒𝑡𝑥. 𝑥𝛽−1𝑒𝛾(𝐽+1)𝑡𝑑𝑥
∞

0

 

𝑠𝑖𝑛𝑐𝑒 𝑧 = (𝜆𝑥)𝛽 

𝑥 =
1

𝜆
𝑧

1
𝛽 

𝑑𝑥

𝑑𝑧
=

1

𝜆𝛽
𝑧

1
𝛽

−1
 

𝑑𝑥 =
1

𝜆𝛽
𝑧

1
𝛽

−1
𝑑𝑧 

𝑀𝑥(𝑡) = 𝜃𝛽𝜆𝛽𝑤𝑖 ∫ 𝑒
𝑡(

1
𝜆

𝑧

1
𝛽)

. (
1

𝜆
𝑧

1
𝛽)

𝛽−1

𝑒𝛾(𝐽+1)𝑧
1

𝜆𝛽
𝑧

1
𝛽

−1
𝑑𝑧

∞

0

 

𝑧
𝛽−1

𝛽 . 𝑧
1
𝛽

−1
= 𝑧0 = 1 

(
1

𝜆
)

𝛽−1

.
1

𝜆
. 𝜆𝛽 = 1 

𝑀𝑥(𝑡) = 𝜃𝜆𝛽𝑤𝑖 ∫ 𝑒
𝑡(

1
𝜆

𝑧

1
𝛽)

𝑒𝛾(𝐽+1)𝑧𝑑𝑧
∞

0

 

According to Taylor series expansion  

𝑒
𝑡(

1
𝜆

(𝑧)
1
𝛽)

= ∑
𝑡𝑛

𝑛!

∞

𝑛=0

. (
1

𝜆
)

𝑛

(𝑧)
𝑛
𝛽 

𝑀𝑥(𝑡) = 𝜃𝛽𝑤𝑖 ∫ ∑
𝑡𝑛

𝑛!

∞

𝑛=0

. (
1

𝜆
)

𝑛

(𝑧)
𝑛
𝛽. 𝑒𝛾(𝐽+1)𝑧𝑑𝑧

∞

0

 

𝑀𝑥(𝑡) = 𝜃𝑤𝑖 ∑
𝑡𝑛

𝑛!

∞

𝑛=0

. (
1

𝜆
)

𝑛

∫ 𝑧
𝑛
𝛽. 𝑒𝛾(𝐽+1)𝑧𝑑𝑧

∞

0

 

𝑀𝑥(𝑡) = 𝜃𝑤𝑖 ∑
𝑡𝑛

𝑛!

∞

𝑛=0

. (
1

𝜆
)

𝑛

∫ 𝑧
𝑛
𝛽. 𝑒𝛾(𝐽+1)𝑧𝑑𝑧

∞

0

 

𝑀𝑥(𝑡) =
𝜃

𝜆𝑛
𝑤𝑖

Γ (
𝑛
𝛽

+ 1)

[𝛾(𝑗 + 1)]
𝑛
𝛽

+1
 ∑

(𝑡)

𝑛!

𝑛∞

𝑛=0

 

Parameter Estimation 
The parameters of the EGG-F distribution are estimated using the maximum likelihood estimation (MLE) method. Let x1, 
x2,…,xn,be a random sample from the GG-EL distribution. The likelihood function L (θ,λ,α,β,γ) for a sample x1,x2,…,xn is the 
product of the PDFs of each observation: 

𝐿(𝑥; 𝜃, 𝛽, 𝜆, γ) = ∏ 𝑓(𝑥; 𝜃, 𝛽, 𝜆, 𝛾)

𝑛

𝑖=1

 

𝑓(𝑥; 𝛼, 𝜃, 𝛽, 𝜆) = 𝜃𝛽𝜆𝛽𝑥𝛽−1𝑒𝛾(𝜆𝑥)𝛽
𝑒

𝜃
𝛾

(1−𝑒𝛾(𝜆𝑥)𝛽
)
 

𝐿(𝑥; 𝛼, 𝜃, 𝛽, 𝜆, γ) = ∏ (𝜃𝛽𝜆𝛽𝑥𝛽−1𝑒𝛾(𝜆𝑥)𝛽
𝑒

𝜃
𝛾

(1−𝑒𝛾(𝜆𝑥)𝛽
)
)

𝑛

𝑖=1

 

Now, take the natural logarithm to get the log-likelihood function: 
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𝐿(𝜃, 𝜆, 𝛼, 𝛽, 𝛾) = ∑ (𝑙𝑜𝑔𝜃 + 𝑙𝑜𝑔𝜆 + 𝑙𝑜𝑔𝛼 − 𝑙𝑜𝑔𝛽 + (𝛼 − 1)𝑙𝑜𝑔 (
𝑥𝑖 + 𝛽

𝛽
) + 𝜆𝛾 (

𝑥𝑖 + 𝛽

𝛽
)

𝛼

+
𝜃

𝛾
(1 − 𝑒

−𝜆(
𝑥𝑖+𝛽

𝛽
)

𝛼

))

𝑛

𝑖=1

 

  𝑙(𝜃, 𝜆, 𝛼, 𝛽, 𝛾) = 𝑛𝑙𝑜𝑔𝜃 + 𝑛𝑙𝑜𝑔𝛽 + 𝑛𝛽𝑙𝑜𝑔 + (𝛽 − 1) ∑ 𝑙𝑜𝑔(𝑥𝑖)
𝑛
𝑖=1 + 𝛾 ∑ (𝜆𝑥𝑖)

𝛽𝑛
𝑖=1 +

𝜃

𝛾
∑ (1 − 𝑒𝛾(𝜆𝑥𝑖)𝛽

)𝑛
𝑖=1  

∂ℓ

∂β
=

𝑛

𝛽
+ 𝑛𝑙𝑜𝑔𝜆 + ∑ 𝑙𝑜𝑔(𝑥𝑖)

𝑛

𝑖=1

+ 𝛾 ∑(𝜆𝑥𝑖)
𝛽

𝑛

𝑖=1

𝑙𝑜𝑔(𝜆𝑥𝑖)𝛽 − 𝜃 ∑ 𝑒𝛾(𝜆𝑥𝑖)𝛽

𝑛

𝑖=1

(𝜆𝑥𝑖)
𝛽𝑥𝑖𝑙𝑜𝑔 

∂ℓ

∂γ
= ∑(𝜆𝑥𝑖)

𝛽

𝑛

𝑖=1

−
𝜃

𝛾2
∑ (1 − 𝑒𝛾(𝜆𝑥𝑖)𝛽

)

𝑛

𝑖=1

−
𝜃

𝛾
∑ (𝑒𝛾(𝜆𝑥𝑖)𝛽

)

𝑛

𝑖=1

(𝜆𝑥𝑖)
𝛽 

∂ℓ

∂λ
=

𝑛𝛽

λ
+ 𝛾𝛽 ∑(𝜆𝑥𝑖)

𝛽𝑥𝑖 − 𝜃𝛽 ∑ 𝑒𝛾(𝜆𝑥𝑖)𝛽

𝑛

𝑖=1

(𝜆𝑥𝑖)
𝛽−1𝑥𝑖

𝑛

𝑖=1

 

∂ℓ

∂θ
=

𝑛

𝜃
−

1

𝛾
∑ (1 − 𝑒𝛾(𝜆𝑥𝑖)𝛽

)

𝑛

𝑖=1

 

Order of Statistics  

The density 𝑓𝑖:𝑛(𝑥)of the ith order statistic for i=1,…n, from independent identically distributed random variable 𝑌1, . . ., 𝑌𝑛   is 

given by  

𝑓𝑖:𝑛(𝑥) =
𝑓(𝑥)

𝐵(𝑖, 𝑛 − 𝑖 + 1)
𝐹(𝑥)𝑖−1 {1 − 𝐹(𝑥)}𝑛−𝑖                                                                              (26) 

CDF: 

𝐹(𝑥) = 1 − 𝑒
𝜃
𝛾

[1−𝑒𝛾(𝜆𝑥)𝛽
]
 

PDF:  

 𝑓(𝑥) = 𝜃𝛽𝜆𝛽𝑥𝛽−1𝑒𝛾(𝜆𝑥)𝛽
𝑒

𝜃

𝛾
(1−𝑒𝛾(𝜆𝑥)𝛽

)
 

Substitute the CDF and pdf in equation (32) 

𝑓𝑖:𝑛(𝑥) =
𝜃𝛽𝜆𝛽𝑥𝛽−1𝑒𝛾(𝜆𝑥)𝛽

𝑒
𝜃
𝛾

(1−𝑒𝛾(𝜆𝑥)𝛽
)

𝐵(𝑖, 𝑛 − 𝑖 + 1)
(1 − 𝑒

𝜃
𝛾

[1−𝑒𝛾(𝜆𝑥)𝛽
]
)

𝑖−1

[ 1 − (1 − 𝑒
𝜃
𝛾

[1−𝑒𝛾(𝜆𝑥)𝛽
]
)]

𝑛−𝑖

 

𝑓𝑖:𝑛(𝑥) =
𝜃𝛽𝜆𝛽𝑥𝛽−1𝑒𝛾(𝜆𝑥)𝛽

𝑒
𝜃
𝛾

(1−𝑒𝛾(𝜆𝑥)𝛽
)

𝐵(𝑖, 𝑛 − 𝑖 + 1)
(1 − 𝑒

𝜃
𝛾

[1−𝑒𝛾(𝜆𝑥)𝛽
]
)

𝑖−1

[ 𝑒
𝜃
𝛾

[1−𝑒𝛾(𝜆𝑥)𝛽
]
]

𝑛−𝑖

 

𝑒
𝜃
𝛾

(1−𝑒𝛾(𝜆𝑥)𝛽
)

= ∑ ∑(−1)𝑔

∞

ℎ=0

∞

𝑔=0

(
𝜃

𝛾
)

𝑔

(
𝑔

ℎ
) (𝑒𝛾ℎ(𝜆𝑥)𝛽

) 

(1 − 𝑒
𝜃
𝛾

[1−𝑒𝛾(𝜆𝑥)𝛽
]
)

𝑖−1

=
1

𝑘!
(

𝜃

𝛾
)

𝑘

∑ ∑ ∑(−1)𝑗+𝑙

∞

𝑙=0

∞

𝑘=0

∞

𝑗=0

(
𝑘

𝑙
) (

𝑖 − 1

𝑗
) (𝑒𝛾(𝜆𝑥)𝛽

)
𝑙

 

[ 𝑒
𝜃
𝛾

[1−𝑒𝛾(𝜆𝑥)𝛽
]
]

𝑛−𝑖

=
1

𝑚!
((𝑛 − 1) (

𝜃

𝛾
))

𝑚

∑ ∑(−1)𝑟

∞

𝑟=0

∞

𝑚=𝑜

(
𝑚

𝑟
) 𝑒𝛾𝑟(𝜆𝑥)𝛽

 

𝑓𝑖:𝑛(𝑥) =
𝜃𝛽𝜆𝛽𝑥𝛽−1𝑒𝛾(𝜆𝑥)𝛽

𝐵(𝑖, 𝑛 − 𝑖 + 1)

1

𝑡!
(

𝜃

𝛾
)

𝑡

∑ ∑(−1)𝑔

∞

ℎ=0

∞

𝑔=0

(
𝑔

ℎ
) (𝑒𝛾ℎ(𝜆𝑥)𝛽

)
1

𝑘!
(

𝜃

𝛾
)

𝑘

∑ ∑ ∑(−1)𝑗+𝑙

∞

𝑙=0

∞

𝑘=0

∞

𝑗=0

(
𝑘

𝑙
) (

𝑖 − 1

𝑗
) (𝑒𝑙𝛾(𝜆𝑥)𝛽

)
1

𝑚!
 

× ((𝑛 − 1) (
𝜃

𝛾
))

𝑚

∑ ∑(−1)𝑟

∞

𝑟=0

∞

𝑚=𝑜

(
𝑚

𝑟
) 𝑒𝛾𝑟(𝜆𝑥)𝛽

 

𝑓𝑖:𝑛(𝑥) =
𝜃𝛽𝜆𝛽𝑥𝛽−1

𝐵(𝑖, 𝑛 − 𝑖 + 1)

1

𝑡!
(

𝜃

𝛾
)

𝑡 1

𝑘!
(

𝜃

𝛾
)

𝑘 1

𝑚!
 

× ((𝑛 − 1) (
𝜃

𝛾
))

𝑚

∑ ∑ ∑ ∑ ∑ ∑ ∑(−1)𝑔+𝑗+𝑙+𝑟

∞

𝑟=0

∞

𝑚=𝑜

∞

𝑙=0

∞

𝑘=0

∞

𝑗=0

∞

ℎ=0

∞

𝑔=0

(
𝑔

ℎ
) (

𝑘

𝑙
) (

𝑖 − 1

𝑗
) (

𝑚

𝑟
) 𝑒𝛾(1+ℎ+𝑙+𝑟)(𝜆𝑥)𝛽
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𝑙𝑒𝑡 𝑧𝑖 = ∑ ∑ ∑ ∑ ∑ ∑ ∑(−1)𝑔+𝑗+𝑙+𝑟

∞

𝑟=0

∞

𝑚=𝑜

∞

𝑙=0

∞

𝑘=0

∞

𝑗=0

∞

ℎ=0

∞

𝑔=0

(
𝑔

ℎ
) (

𝑘

𝑙
) (

𝑖 − 1

𝑗
) (

𝑚

𝑟
) 

Therefore 

𝑓𝑖:𝑛(𝑥) =
𝜃𝛽𝜆𝛽𝑥𝛽−1

𝐵(𝑖, 𝑛 − 𝑖 + 1)

1

𝑡!
(

𝜃

𝛾
)

𝑡 1

𝑘!
(

𝜃

𝛾
)

𝑘 1

𝑚!
 × ((𝑛 − 1) (

𝜃

𝛾
))

𝑚

𝑧𝑖𝑒
𝛾(1+ℎ+𝑙+𝑟)(𝜆𝑥)𝛽

 

 
Applications 
The GG-W distribution is applied to two real-world datasets to demonstrate its modeling capabilities. The performance is 
compared with other competing models using Statistical fit criteria such as the Akaike Information Criterion (AIC), Bayesian 
Information Criterion (BIC) and Log Likelihood (LL) and goodness-of-fit criteria like Kolmogorov-Smirnov (KS), Anderson-
Darling (AD), and Cramér-von Mises (CM) statistics. 
Consider an uncensored data set consisting of 100 observations on breaking stress of carbon fibers (in Gba): 
 
Table 1: Data of Breaking stress of carbon fibers (in Gba) 
 

3.70, 2.74, 2.73, 2.50, 3.60, 3.11, 3.27, 2.87, 1.47, 3.11, 4.42, 2.41, 3.19, 3.22, 1.69, 3.28, 3.09, 1.87, 
3.15, 4.90, 3.75, 2.43, 2.95, 2.97, 3.39, 2.96, 2.53, 2.67, 2.93, 3.22, 3.39, 2.81, 4.20, 3.33, 2.55, 3.31, 
3.31, 2.85, 2.56, 3.56, 3.15, 2.35, 2.55, 2.59, 2.38, 2.81, 2.77, 2.17, 2.83, 1.92, 1.41, 3.68, 2.97, 1.36, 
0.98, 2.76, 4.91, 3.68, 1.84, 1.59, 3.19,1.57, 0.81, 5.56, 1.73, 1.59, 2, 1.22, 1.12, 1.71, 2.17, 1.17, 5.08, 
2.48, 1.18, 3.51, 2.17, 1.69, 1.25, 4.38, 1.84, 0.39, 3.68, 2.48, 0.85, 1.61, 2.79, 4.70, 2.03, 1.80, 1.57, 
1.08, 2.03, 1.61, 2.12, 1.89, 2.88, 2.82, 2.05, 3.65. 

 
Table 2: Summary Statistics Breaking stress of carbon fibres (in GPa) Data 

Mean SD Median Min Max Skew Kurtosis Range 
2.62 1.01 2.70 0.39 5.56 0.36 0.04 5.17 

 
This table provides key descriptive statistics such as mean, standard deviation, median, minimum, maximum, skewness, 
kurtosis, and range. 
Table 3: Log likelihood and Information Criterion of breaking stress of carbon fibres  

Distribution LogLikelihood AIC BIC 

Exp. Gompertz -295.6787 593.3574 595.9625 

Exp. Weibull -787.8326 1579.6652 1584.8755 

Gompertz -311.3294 626.6588 631.8692 

Weibull -944.2575 1894.5150 1902.3306 

GGWeibull -217.0381 444.0761 457.1020 
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DISCUSSION 
The results presented in Table 3 show a clear comparison of the log-likelihood, Akaike Information Criterion (AIC), and 
Bayesian Information Criterion (BIC) values for several distributions fitted to the breaking stress data of carbon fibers. Among 
the models considered — including the Exponentiated Gompertz, Exponentiated Weibull, Gompertz, Weibull, and Gompertz 
Generalized Weibull (GGWeibull), the GGWeibull distribution clearly emerges as the best performer. It achieves the highest 
(least negative) log-likelihood value of −217.0381, compared to −295.6787 for the Exponentiated Gompertz, −311.3294 for the 
Gompertz, −787.8326 for the Exponentiated Weibull, and −944.2575 for the Weibull. In addition to superior log-likelihood, the 
GGWeibull also produces the lowest AIC and BIC values, with AIC = 444.0761 and BIC = 457.1020. These values are 
significantly lower than the next best model, the Exponentiated Gompertz (AIC = 593.3574, BIC = 595.9625), indicating that 
the GGWeibull achieves the best balance between model fit and complexity. The AIC and BIC are particularly important 
because they penalize the addition of unnecessary parameters, ensuring that a model’s superior fit is not simply due to 
overfitting but rather reflects a genuine improvement in capturing the underlying data structure. The poor performance of the 
classical Weibull and Gompertz models, which show the worst log-likelihood, AIC, and BIC, underscores the limitations of 
traditional two-parameter distributions when applied to complex engineering data such as breaking stress. In contrast, the 
GGWeibull, derived by applying the Gompertz generator to the Weibull baseline, enhances flexibility and adaptability, making 
it well-suited to accommodate diverse shapes in hazard functions and tail behaviours that simpler models fail to capture. In 
practical terms, the superior fit of the GGWeibull distribution has meaningful implications for materials science and reliability 
engineering. Accurately modelling the stress distribution of carbon fibres is crucial for predicting material failure, optimising 
design, and improving safety margins. The GGWeibull’s superior performance suggests it can provide more reliable estimates 
of failure probabilities, critical stress thresholds, and material durability compared to classical models. Overall, the analysis 
strongly supports the GGWeibull as the most suitable and effective model for this dataset, offering clear advantages over 
established alternatives in both statistical performance and practical application. The histogram with theoretical densities shown 
in the plot compares the fit of five distributions — Exponentiated Gompertz (red), Exponentiated Weibull (green), Gompertz 
Generalised Weibull (blue), Gompertz (orange), and Weibull (purple) — against the observed data of breaking stress of carbon 
fibres. Visually, the histogram (light blue bars) represents the empirical density of the observed data. Among the plotted curves, 
the blue curve (Gompertz Generalised Weibull) aligns most closely with the shape of the histogram, capturing both the central 
peak and the spread across the observed range. This supports the earlier statistical results where the GGWeibull model had 
the best log-likelihood, AIC, and BIC values, reflecting its superior fit. The red (Exponentiated Gompertz) and orange 
(Gompertz) curves rise more gradually and fail to capture the sharper central peak of the data, indicating underfitting in the 
main density region. The green (Exponentiated Weibull) curve rises sharply but overshoots in the upper range, suggesting 
poor alignment with the actual data distribution. The purple (Weibull) curve also sharply increases and peaks too early, showing 
a clear mismatch with the empirical histogram. 
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CONCLUSION  
The analysis of the breaking stress data of carbon fibres clearly shows that the Gompertz Generalised Weibull (GGWeibull) 
distribution provides the best statistical and visual fit among all the considered models. This conclusion is supported by its 
highest log-likelihood and the lowest AIC and BIC values, indicating an optimal balance between model fit and complexity. The 
histogram with theoretical densities further confirms that the GGWeibull distribution closely matches the observed data pattern, 
accurately capturing both the central tendency and tail behaviour, while other distributions either underfit or overfit key areas 
of the data. 
 
RECOMMENDATION 
It is recommended that the Gompertz Generalised Weibull (GGWeibull) distribution be used for modeling breaking stress and 
related engineering datasets, as it offers superior flexibility and predictive performance compared to classical models. 
Practitioners and researchers should consider adopting the GGWeibull model for reliability analysis, failure prediction, and 
material strength studies. Additionally, future research should investigate the model’s performance on larger and more diverse 
datasets and explore its applicability in other fields such as biomedical survival analysis, environmental risk assessment, and 
industrial process modeling. 
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